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Universal singularity at the closure of a gap in a random matrix theory
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We consider a HamiltonianH5H01V, in which H0 is a given nonrandom Hermitian matrix, andV is an
N3N Hermitian random matrix with a Gaussian probability distribution. We had shown before that Dyson’s
universality of the short-range correlations between energy levels holds at generic points of the spectrum
independently ofH0. We consider here the case in which the spectrum ofH0 is such that there is a gap in the
average density of eigenvalues ofH which is thus split into two pieces. When the spectrum ofH0 is tuned so
that the gap closes, a new class of universality appears for the energy correlations in the vicinity of this singular
point. @S1063-651X~98!10604-9#

PACS number~s!: 05.45.1b, 05.40.1j
en

i
is-

-
e

ve

he
rm

n

d
a

tw

f
a

n
nt
rs
e
e

i-
th
n

a

tri-

ble

rre-
-
ter-

-
s
n

ed

ue
I. INTRODUCTION

We consider a Hamiltonian which is the sum of a giv
deterministic partH0 and of a random potentialV with a
Gaussian probability distribution. Although the measure
not unitary invariant, one can still obtain the probability d
tribution for the eigenvalues ofH through the well-known
Itzykson-Zuber integral@1#. Generalizing a method intro
duced by Kazakov@2# for the density of eigenvalues, w
have found an exact representation of then-level correlation
functions in terms of the determinant of ann3n matrix
whose matrix elements are given by a kernelKN(l,m) @3–
5#. For generic values ofl andm in support of the average
spectrum, we proved earlier that this kernel reduces uni
sally to the sine-kernel of Dyson@6# as if H0 was not there.
Consequently all the correlation functions, including t
level-spacing distribution, reduce to the Wigner-Dyson fo
in the short distance regime independently ofH0. However,
at singular points of the spectrum the situation is differe
For instance at the edge of the spectrum of the density
state, the kernel is given in terms of Airy functions instea
and a new class of universality for the correlations appe
@7–9#. In this paper, we investigate what happens when
edge singularities collapse. The spectrum ofH0 is thus tuned
to produce a gap in the average density of eigenvalues oH,
which closes at the origin through a fine tuning of the p
rameters. The simplest way is to take61 for the eigenvalues
of H0, with an equal number of positive and negative eige
values, but we shall prove that the results are independe
H0, provided a gap closes. Near the origin, a new unive
behavior appears, which is not of Airy type. The kern
which governs this new singularity will be discussed in d
tail. A relation to Painleve´ II differential equations and to a
two-dimensionalA2 Garnier system is found. Higher mult
critical behavior is also investigated. We also consider
analogous problem withV made of complex blocks, and i
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that case a similar tuning ofH0 leads to the degeneracy of
Bessel kernel, related to Painleve´ III equations.

II. DETERMINISTIC PLUS RANDOM HAMILTONIAN

We consider anN3N Hamiltonian matrixH5H01V,
whereH0 is a given, nonrandom Hermitian matrix, andV is
a random Gaussian Hermitian matrix. The probability dis
bution P(H) is thus given by

P~H !5
1

Z
e2~N/2!TrV2

5
1

Z8
e2~N/2!Tr~H222H0H !. ~2.1!

We are thus dealing with a Gaussian unitary ensem
modified by the external matrix sourceH0, which breaks the
unitary invariance of the measure. In previous work@3–5#,
we have discussed the density of state, the two-level co
lation function, and then-level correlations. For complete
ness, here we briefly recall a few steps, but refer the in
ested reader to our earlier work. The density of stater(l) is

r~l!5
1

N
^Trd~l2H !&5E

2`

1` dt

2p
e2 iNtlU~ t !, ~2.2!

whereU(t) is the average ‘‘evolution’’ operator

U~ t !5^TreiNtH&. ~2.3!

We first integrate over the unitary matrixv which diagonal-
izes H in Eq. ~2.1!; without loss of generality, we may as
sume that H0 is a diagonal matrix with eigenvalue
(a1 , . . . ,aN). This is done with the help of the well-know
Itzykson-Zuber integral for a unitary matrixv @1#,

E dv exp~TrAvBv†!5
det@exp~aibj !#

D~A!D~B!
, ~2.4!

whereD(A) is the Van der Monde determinant construct
with the eigenvalues ofA:

D~A!5)
i , j

N

~ai2aj !. ~2.5!

,
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We are then led to

U~ t !5
1

Z8D~H0! (a51

N E dx1 . . . dxNeiNtxa

3D~x1 , . . . ,xN!expS 2
N

2( xi
21N( aixi D .

~2.6!

The normalization is fixed by

U~0!5N. ~2.7!

The integration over thexi ’s may be done easily, if we not
that

E dx1•••dxND~x1 , . . . ,xN!expS 2
N

2( xi
21N( bixi D

5D~b1 , . . . ,bN!expS N

2( bi
2D . ~2.8!

Puttingbi5ai1 i tda,i , we obtain

U~ t !5 (
a51

N

)
gÞa

N S aa2ag1 i t

aa2ag
De2~Nt2/2!1 i taa. ~2.9!

The sum overN terms in Eq.~2.9! may then be replaced b
a contour integral in the complex plane,

U~ t !5
1

i t R du

2p i )
g51

N S u2ag1 i t

u2ag
De2~Nt2/2!1 i tNu.

~2.10!

The contour of integration encloses all the eigenvaluesag .
The Fourier transform with respect tot gives the density of
state in the presence of an arbitrary external sourceH0; note
that this representation is exact for finiteN.

In the large-N limit, the one particle Green functionG(z)
is readily obtained@10–12#. Indeed one finds that

G~z!5 K 1

N
Tr

1

z2H01VL 5
1

N(
g

1

z2ag2G~z!
.

~2.11!

For simplicity, we begin with the case in which half of th
eigenvaluesag are equal to1a and half to2a. Whena is
larger than 1, one finds a gap in the spectrum which clo
whena reaches 1. Then the density of state vanishes atl50
from ~2.11!, r(l).l1/3. The density of state is plotted i
Fig. 2 of Ref.@11#.

For then-point correlation function, we have

Rn~l1 ,l2 , . . . ,ln!5 K 1

N
Trd~l12H !

1

N

3Trd~l22H !•••

1

N
Trd~ln2H !L .

~2.12!
es

By using integral representations for thed functions, and
repeating the previous steps, we obtain@4,5#

R2~l1 ,l2!5KN~l1 ,l1!KN~l2 ,l2!

2KN~l1 ,l2!KN~l2 ,l1!, ~2.13!

with the kernel

KN~l1 ,l2!5~21!N21E dt

2p R du

2p i

3 )
g51

N S ag2 i t

u2ag
D 1

u2 i t

3e2~N/2!u22~N/2!t22Nitl11Nul2. ~2.14!

Similarly, the n-point functions are given in terms of th
determinant of the n3n matrix whose elements ar
KN(l i ,l j ) @5,13#. In Ref. @3#, this kernelKN(l1 ,l2) was
examined in the large-N limit, for fixed N(l12l2). In this
limit one can evaluate the kernel~3.20! by the saddle-point
method. The result was found to be, up to a phase factor
we omit here,

KN~l1 ,l2!52
1

py
sin@pyr~l1!#, ~2.15!

wherey5N(l12l2). Apart from the scale dependence pr
vided by the density of stater, then-point correlation func-
tion have thus a universal scaling limit, i.e., independent
the deterministic partH0 of the random Hamiltonian.

The large-N behavior of the density of stater(l)
5K(l,l) near the edge point is also universal. This univ
sality has been investigated for the Airy case@7,8# and for
the Bessel case@9#. We will show in Sec. III that, similarly to
what occurs at the origin, we find a new class of universa
for the density of states and for then-point functions.

III. CRITICAL BEHAVIOR NEAR THE ORIGIN

We first consider the case where the eigenvalues ofH0
are6a, each value beingN/2 times degenerate. The kern
in Eq. ~2.14! becomes

KN~l1 ,l2!5~21!~N/2!11E dt

2p R du

2p i S a21t2

u22a2D N/2

3
1

u2 i t
e2~N/2!u22~N/2!t22Nitl11Nul2. ~3.1!

From this expression, settingl15l2, we obtain the density
of state r(l1). The derivative ofr(l) with respect tol
eliminates the factoru2 i t in the denominator of Eq.~3.1!,
and leads to a factorized expression

1

N

]

]l
r~l!52f~l!c~l!, ~3.2!

where
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f~l!5E
2`

` dt

2p
e2~N/2!t21~N/2!ln~a21t2!2Nitl, ~3.3!

c~l!5 R du

2p i
e2~N/2!u22~N/2!ln~a22u2!1Nul. ~3.4!

For largeN the two integrals defining the functionsf andc
are given by a saddle point. Whenl1 and l2 are near the
origin, the saddle points in the variablest andu move to the
origin. Therefore for obtaining the largeN behavior off
nearl50 we can expand the logarithmic term in powers
t. One sees readily that the coefficient of the quadratic te
in t2 vanishes fora51; in fact three saddle points are mer
ing at the origin whena reaches 1. We must then expand
the exponential up to ordert4, and we obtain

f~l!5E
2`

` dt

2p
e2~N/4!t42Nitl. ~3.5!

Rescalingt to N21/4t8 and settingl5N23/4x, we find that

f̂~x!5N1/4f~N23/4x! ~3.6!

has a largeN, finite x, limit given by

f̂~x!5
1

pE0

`

dt e2~1/4!t4cos~ tx!. ~3.7!

This Fourier transform of the exponential of2t4 is known
under the name of a Turrittin or Pearcey integral@14,15#. We
can immediately verify that it satisfies the differential equ
tion

f̂98~x!5xf̂~x!. ~3.8!

From the integral representation~3.7! we obtain easily the
Taylor expansion of this function at the origin

f̂~x!5
A2

4p (
m50

` GS 1

4
1

m

2 D ~21!m2mx2m

~2m!!
~3.9!

and its asymptotic behavior at largex,

f̂~x!;A 2

3p
x21/3e2~3/8!x4/3

cosS 3A3

8
x4/32

p

6 D .

~3.10!

We return now to the second function~3.4!. Similarly, in the
scaling limit N large,l small, N3/4l finite, we may expand
up to orderu4, and define

ĉ~x!5N1/4c~N23/4x!. ~3.11!

In the large-N, finite-x limit, we find

ĉ~x!5E
c

du

2p i
e~u4/4!1ux. ~3.12!

This integral is no longer a contour integral around the s
gularities atu561 , but the result of a saddle-point approx
f
m

-

-

mation. Therefore the integral is over a path consisting
four lines of steepest descent in the complexu plane. Along
these straight lines, the variableu is changed successivel
into e6(p/4)iu ande6(3p/4)iu. This leads to

ĉ~x!52ImFv

pE0

`

e2u4/4~exuv2e2xuv!G , ~3.13!

in which v5ep i /4. The functionĉ(x) satisfies the differen-
tial equation

ĉ98~x!52xĉ~x!, ~3.14!

and again we find, from Eq.~3.13!, the Taylor expansion

ĉ~x!52
1

Ap
(
n50

`
~21!nx4n11~2n!!

n! ~4n11!!
~3.15!

and the large-x behavior

ĉ~x!;2A 2

3p
x21/3e~3/8!x4/3

cosS 3A3

8
x4/31

2p

3 D .

~3.16!

In fact, one may express the whole kernelKN(l1 ,l2) of
Eq. ~3.1! in terms of the two functionsf̂ andĉ in the scaling
limit. Indeed, defining

l15N23/4x, l25N23/4y, ~3.17!

K̂~x,y!5N1/4KN~N3/4l1 ,N3/4l2! ~3.18!

in the large-N, finite-x-and-y limit,

K̂~x,y!5E
2`

` dt

2pE0

` du

2p i
e2~ t4/4!2~u4/4!2 i txS euyv

u2 i tv21

2
euyv21

u2 i tv
1

euyv23

u2 i tv3 2
euyv3

u2 i tv23D , ~3.19!

wherev5ep i /4, or, more explicitly,

K̂~x,y!5
1

2p2i E0

`

duE
2`

`

dt
e2[ ~u41t4!/4]2 i tx

u41t4

3@2iu3sins sinhs1A2u2t~coss sinhs

2sins coshs!12iut2coss coshs

2A2t3~sins coshs1coss sinhs!#, ~3.20!

wheres5yu/A2.
In Appendix B, it is shown that the kernelK̂(x,y) may be

expressed simply in terms off̂ and ĉ as

K̂~x,y!5
f̂8~x!ĉ8~y!2f̂9~x!ĉ~y!2f̂~x!ĉ9~y!

x2y
.

~3.21!

Therefore, the density of state is given by
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r̂~x!52@f̂8~x!ĉ9~x!2f̂9~x!ĉ8~x!1xf̂~x!ĉ~x!#,
~3.22!

and the connected correlation function for two eigenval
symmetric with respect to the origin,

r̂c~x,2x!52@K̂~x,2x!#2, ~3.23!

is given through

K̂~x,2x!5
1

x
f8~x!c8~x! ~3.24!

which we know both forx small in an expansion in eve
powers ofx, and for largex, at which it behaves as

K̂~x,2x!;
2

3px
sinS 3A3

4
x4/3D . ~3.25!

Using Taylor expansions off̂(x) and ĉ(x), we have the
expression for the kernelK̂(x,y) by Eq. ~3.21!. For smallx
andy, it becomes

K̂~x,y!5
1

2A2p3/2F2b1
a

6
~2x212xy12y2!

1
b

60
~3x4212x3y212x2y218xy322y4!

1
a

5040
~25x6130x5y130x4y2240x3y3

130x2y4212xy5212y6!1O~x8!G , ~3.26!

where a5G( 1
4 )53.6256 andb5G( 3

4 )51.2254. In Appen-
dix C, we evaluate the kernelKN(x,y) for several finite-N
cases, and confirm Eq.~3.26!.

The level-spacing probability is an important quantity f
the universality. The general distribution is given by the d
terminant of the kernel in our system@5#. We consider the
probability E(s) of no eigenvalues in the interva
(2s/2,s/2). The same as ordinary random matrix theo
without an external source, the probabilityE(s) is given by

E~s!5 (
n50

`
~21!n

n! E
2s/2

s/2

•••E
2s/2

s/2

3)
k51

n

dxkdet@K~xi ,xj !# i , j 51, . . . ,n . ~3.27!

For smalls, we have a series expansion forE(s),

E~s!512NE
2s/2

s/2

r~x!dx1
N2

2 E
2s/2

s/2 E
2s/2

s/2

@K~x,x!K~y,y!

2K~x,y!K~y,x!#dx dy1•••. ~3.28!

Using Eq.~3.12!, andz5N23/4l, we have
s

-

E~s!512N3/4
G~ 3

4 !

A2p3/2E
2s/2

s/2 S 11
a

4b
N3/2z2

2
1

8
N3z41••• Ddz1•••

512N3/4
G~ 3

4 !

A2p3/2Fs1
a

6b
N3/2S s

2D 3

2
1

20
N3S s

2D 5G
1•••. ~3.29!

Then we take a scaling of the energys ass→N23/4s,

E~s!512
G~ 3

4 !

A2p3/2Fs1
a

6bS s

2D 3

2
1

20S s

2D 5G1•••.

~3.30!

Using the expressions of Eq.~3.26!, we have

E~s!512 s̃1
c2

2 Fab

9
s41S a2

720
2

7b2

900D s62
41ab

201600
s8G

1O~s9! ~3.31!

wherea5G( 1
4 ),b5G( 3

4 ),c51/(2p)3/2, and s̃ is

s̃5E
2s/2

s/2

r~x!dx

52cFbs1
a

48
s32

b

20S s

2D 5

1
a

1680S s

2D 7

1••• G .
~3.32!

The quantitys̃ is a function ofs. We have to use this vari
able instead ofs since the density of state is not a constant
the scaling limit, whereas, in the usual Wigner-Dyson ca
s̃5s. Therefore, it may be useful to writeE(s) as a function
of s̃ instead ofs. We have, in terms ofs̃ ,

E~s!512 s̃1
abc2

18 S s̃

2bcD
4

2S 17a2c2

4320
1

7b2c2

1800D S s̃

2bcD
6

1O~ s̃ 8!

512 s̃11.6970s̃ 4216.3455s̃ 61O~ s̃ 8!. ~3.33!

This result may be compared with the Wigner-Dyson ca
which reads

E~s!512s1
p2

36
s42

p4

675
s61O~s8!. ~3.34!

The large-s̃ behavior may be obtained through a Pade´ analy-
sis of the series expansion of Eq.~3.33!. In Appendix D, we
construct the Pade´ approximants for the quantityR( s̃ ), de-
fined by

R~ s̃ !5
]

] s̃
lnE~ s̃ !, ~3.35!

and thereby obtain the large-s̃ behavior ofE( s̃ ).



th

th

ic-

he
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IV. UNIVERSALITY

We have analyzed the kernel near the origin when
external source eigenvalues areag561. We will show that
the results are independent, in the scaling limit, of
ne

er

a

ne

d
ch

e

e

e

distribution of the external source eigenvalues~provided a
gap closes!, and are thus universal. We consider, for simpl
ity, the case in which the external source eigenvaluesag are
distributed symmetrically around the origin. If we denote t
distribution ofag by r0(a), the kernel is given by
K~z1 ,z2!52E
2`

` dt

2p R du

2p i

1

u2 i t
e2~N/2!t22~N/2!u22Nitz11Nuz2e~N/2!*dar0~a!ln[ ~a21t2!/~a22u2!] . ~4.1!

Expanding this expression for smallt andu, we have

K~z1 ,z2!52E
2`

` dt

2pEc

du

2p i

1

u2 i t
e2~N/2!t22~N/2!u21~N/2!~ t21u2!*da[r0~a!/a2] 2Nitz11Nuz2e2~N/2!~ t42u4!*da[r0~a!/a4] . ~4.2!
the
e
of

-
l,
,

ns

rts
Thus, if we have

E da
r0~a!

a2 51, ~4.3!

we recover the previous kernel~3.19!. The condition of Eq.
~4.3! is the condition that the density of stater(l) starts
splitting. Indeed, we consider the equation which determi
the Green function in the large-N limit @11,12#,

G~z!5E da
r0~a!

z2a2G~z!
. ~4.4!

Putting z50, noting that parity implies that ReG(0)50,
when we take the imaginary part of Eq.~4.4!, we obtain

r~0!5r~0!E da
r0~a!

a21@pr~0!#2 . ~4.5!

Therefore, as long as*da@r0(a)/a2#,1 we find that the
condition of Eq.~4.3! is equivalent tor(0)50, and a gap is
present; but when the condition of Eq.~4.3! is satisfied the
gap closes and we recover the kernel that we consid
hereabove. Therefore in the scaling regimeK(z1 ,z2) near
z15z250 is indeed universal, i.e., independent ofr0(a),
provided condition~4.3! is satisfied, or, equivalently, that
gap closes at the origin in the density of states.

V. MULTICRITICAL BEHAVIOR

We have obtained the universal behavior of the ker
near the origin by the scaling of the energyl5N23/4x in the
large-N limit with a fixed x, when the spectrum ofH0 is such
that the quadratic terms int in the exponent of the integran
vanish. Now we discuss the multicritical behavior in whi
the exponent starts fromt2k12 term in the scaling limit, and
the energyl is scaled byl5N2(2k11)/(2k12)x.

Suppose that we begin with the Hermitian matrixH
coupled toH0, which is a diagonal complex matrix. Th
probability distribution of the matrixH is

P~H !5
1

Z
e2~N/2!Tr~H222H0H !. ~5.1!
s

ed

l

Then, this probability becomes complex, and we lose
meaning of a probability distribution since it is not positiv
definite. We here simply pursue the analytic continuation
the diagonal eigenvaluesag in the complex plane. By choos
ing the appropriateag , we can obtain an effective kerne
which starts witht2k12 term in the exponent of the integrand

K~z1 ,z2!52E dt

2p R du

2p i

1

u2 i t

3e2NC~ t2k121~21!ku2k12!2Nitz11Nuz2. ~5.2!

For k52, the eigenvalues of the external sourceag are
assumed to take the valuesag56a,6b, each one beingN/4
times degenerate. For higher multicriticality, the conditio
are

1

a2 1
1

b2 52, ~5.3!

1

a4 1
1

b4 50. ~5.4!

We then obtain an effective action for the kernel which sta
with a t6 term@Eq. ~5.2!# in the large-N limit. The solution of
Eqs. ~5.3! and ~5.4! are a5(1/21/4)e2(p/8)i , and b
5(1/21/4)ep/8i . The effective form of the kernel is thus

K~l,m!52E
2`

` dt

2p R du

2p i

1

u2 i t
e2~N/3!~ t61u6!2Nitl1Num.

~5.5!

The scaling limit is obtained by rescalingt andu by N21/6,
andl andm by N25/6. The integration of Eq.~5.5! shows a
PainlevéII equation ofA4 type.

Similarly to Eq.~3.21!, we find

K̂~x,y!5
2

x2y
@f99~x!c~y!2f98~x!c8~y!1f9~x!c9~y!

2f8~x!c98~y!1f~x!c99~y!#, ~5.6!

wheref(x) andc(y) are defined by
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f~x!5E
2`

` dt

2p
e2~ t6/3!1 i tx, ~5.7!

c~x!5E
c

du

2p i
e2~u6/3!1ux. ~5.8!

The pathc of the integration is taken along four lines, sta
ing from the origin to infinity, andu is replaced on this lines
asu5e6(p/3)iu8, andu5e6(2p/3)iu8. These functions satisfy
the differential equations

d5

dx5 f~x!52
1

2
xf~x!, ~5.9!

d5

dx5 c~x!5
1

2
xc~x!. ~5.10!

In general, if we chooseag5(6a1 , . . . ,6ak), eachaj is
N/2k times degenerated, and if they satisfy

(
i 51

k
1

ai
2 5k,

(
i 51

k
1

ai
2m 50, ~m52,3, . . . ,k!, ~5.11!

the effective kernel becomes Eq.~5.2!. The scaling t
5N21/(2k12)t8, andz5N2(2k11)/(2k12)l gives the universa
behavior in the large-N limit.

VI. DEGENERACY OF BESSEL CASE

In a previous paper@9#, we considered an ensemble
matricesM , of the form

M5S 0 C†

C 0 D , ~6.1!

in which C is anN3N complex random matrix, with prob
ability distribution
P~C!5
1

Z
exp~2N TrC†C2N TrAC†C!. ~6.2!

Noting that

G~z!5 K 1

2N
Tr

1

z2M L 5 K 1

N
Tr

z

z22C†CL , ~6.3!

we obtain a relation between the density of states,

r~z!5 K 1

2N
Trd~z2M !L ~6.4!

and

r̃ ~z!5 K 1

N
Trd~z2C†C!L , ~6.5!

which reads

r~z!5uzu r̃ ~z2!. ~6.6!

The two point correlation function is

R2~z1 ,z2!5 K 1

N
Trd~z12C†C!

1

N
Trd~z22C†C!L .

~6.7!

Using the Itzykson-Zuber formula, we obtain the kernel
the presence of the external sourceA,

K~z1 ,z2!5E
2`

` dt

2p R du

2p i S 1

u2 i t D
3S 11u

11 i t D
N

)
g

~ag2 i t !

~u2ag!
e2 i tNz11uNz2.

~6.8!

When we putag50 and take the large-N limit, with shifts
t,u→Nt,Nu we obtain the Bessel kernel@9#.

If we chooseag5211a,211b, each one isN/2 times
degenerated, and making the shiftsu→u21 and t→t1 i ,
the kernel is written by
K~z1 ,z2!5E
2`

` dt

2p R du

2p i

1

u2 i t S u

it D
NF ~a2 i t !~b2 i t !

~u2a!~u2b! GN/2

e2 iNtz11Nuz21N~z12z2!

5E
2`

` dt

2p R du

2p i

1

u2 i t
e~N/2!ln[12~a/ i t !] 1~N/2!ln[12~b/ i t !] 2~N/2!ln[12~a/u!] 2~N/2!ln[12~b/u!]e2 iNtz11Nuz21N~z12z2!.

~6.9!
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4146 57E. BRÉZIN AND S. HIKAMI
Taking the large-N limit with scalings t→Nt and u→Nu,
we have, after expanding the logarithm to first order,

K~z1 ,z2!5NE
2`

` dt

2p R du

2p i

1

u2 i t

3e~ i /2t !~a1b!1~1/2u!~a1b!e2 iN2tz11N2uz21N~z12z2!.

~6.10!

If a1b is nonvanishing, we have a Bessel kernel, which
studied in an earlier publication,@9#. The density of state is
obtained as the derivative ofK(z,z); for example, in the case
a1b52,

]K~z,z!

]z
5N3E dt

2p
e~ i /t !2 i tx2 R du

2p i
e~1/u!1ux2

,

~6.11!

where we have putz5N22x2. The right hand side of Eq
~6.11! becomesN3J1

2(2x)/4x2, and the density of state in Eq
~6.6! has the universal form

r~z!5Nz@J0
2~2zN!1J1

2~2zN!#. ~6.12!

For the Bessel kernel of Eq.~6.10!, we have an integra
representation. By an appropriate rescaling, the Bessel ke
reduces to@8#

K~x,y!5E
0

`

f~x1z!f~y1z!dz, ~6.13!

where

f~x!5
J1~Ax!

Ax
. ~6.14!

Using this representation, and the standard relations betw
Bessel functionsJ0(x) andJ1(x), and by considering

I 15E
0

`

~x1z!
J1~Ax1z!

Ax1z

J1~Ay1z!

Ay1z
dz, ~6.15!

we easily obtain

I 12I 25~x2y!K~x,y!5AxJ1~Ax!J0~Ay!

2AyJ1~Ay!J0~Ax!, ~6.16!

whereI 25I 1(x→y,y→x). We have thus obtained a close
expression for the kernel from this equation; we could a
have obtained it through the Christoffel-Darboux identity f
orthogonal polynomials~Laguerre polynomials in this case!.

Whena1b50, we find a new scaling limit near the or
gin. Expanding the logarithmic terms in Eq.~6.9!, we obtain
for the kernel, after rescalingz15N2(3/2)x2, t5N2(1/2)t8,

I 5E
2`

` dt

2p
expF2

1

4t2 ~a21b2!2 i tx2G . ~6.17!

This integral should be understood as a contour integral,
it should be calculated by taking the residue at the orig
e

el

en

o

nd
.

This integralI appears in Painleve´ type III with A2 system,
two-dimensional Garnier system@17#. The perturbative ex-
pansion of this kernel may be deduced from this integ
representation.

The higher multicritical points are obtained by tuning t
values ofag ; however, the next one, for instance, requir
the conditionsa11a21a31a450 anda1

21a2
21a3

21a4
250

(ag5a1 ,a2 ,a3 ,a4). Thus it is necessary to consider th
complex values forag , for example,a151, a2521, a3
5 i , anda452 i .

VII. SUMMARY AND DISCUSSIONS

In this paper, we have considered the critical scaling
havior when the two edges of the support of the eigenval
merge at one point. This has been studied within the Ga
ian random matrix model with an external source. The c
relation functions and the level-spacing distribution belo
then to a new universality class, different from the Wigne
Dyson case.

Although our model is limited to Gaussian potentials, se
eral universality classes may be obtained by tuning the
ternal source eigenvalues. It may be interesting to extend
study to more complicated cases like two-dimensional gr
ity, for which the kernel has a similar expression@18#.

The unitary matrix model at the transition point has a
been shown to be related to the Painleve´ II type by consid-
ering non-Gaussian distributions on the unit circle; mu
critical behavior has also been investigated there@19#. Our
Gaussian model with an external source is an alterna
model for tuning multicritical behavior; it gives concise an
exact expressions for finiteN, which are useful to derive
simple closed expressions for the universal correlation fu
tions in the scaling limit.

We have considered the critical case when a gap open
the density of states. Even in this case, then-level correlation
functions are determined by the kernel, completely. The
fore, we know that all the correlation functions become u
versal. After opening the gap, there is no more universal
Indeed, if we average over the external source eigenvalue
some interval, when the gap opens, we obtain a Poisson
behavior for the level-spacing probability distribution.

It has been shown that the Bessel kernel case has inte
ing physical applications in several different problems,
cluding the random flux problem, two-state quantum H
effect @9,20#, and the zero mode of a Dirac operator@21#. It
should be interesting to discuss the physical applications
the multicritical behavior discussed in this paper.
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APPENDIX A: TWO-DIMENSIONAL PAINLEVE ´ II
EQUATION

It is known that the differential equation~A1! is related to
a Painleve´ II differential equation with anA2 system, where
the notationA2 stands for a two-dimensional Garnier syste
@16,17#. When two saddle points merge, instead of three,
exponent in Eq.~3.5! is only t3, and its Fourier transform is
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an Airy function; it is then related to Painleve´ II with an A1
system, and the singurality near the edge of the densit
state is indeed described in terms of Airy functions@7,8#. In
our case, two edges merge at the origin, three saddle p
collapse together, and the Airy case degenerates.

Another mathematical interpretation of these functio
may be obtained as follows. Let us note that the Painlev´ II
equation is given by the nonlinear equation

d2q

dt2
52q31tq1a. ~A1!

This equation is equivalent to the two equations

dq

dt
5p2q22

t

2
, ~A2!

dp

dt
52pq1a1

1

2
. ~A3!

These two equations in turn, may be viewed as Hamilto
equations based onH(p,q)5 1

2 p22p(q21 1
2 t)2(a1 1

2 )q.
Taking a52 1

2, p50 is a solution; writing then q
5(d/dt)lnf, one finds that f satisfies @f(t)#95
2(t/2)f(t), and thus thatf is an Airy function.

The two-dimensional Hamiltonians for the Painleve´ II
equation (A2 system! are @17#

H15~q2
22q12t1!p1

212q2p1p21p2
212~q1

21t2q22t1
2!p1

12~q1q21t1q21t2!p21kq1 , ~A4!

H25q2p1
212p1p212~q1q21t1q21t2!p1

12~q2
22q11t1!p21kq2 . ~A5!

We have (i , j 51,2)

]qj

]t i
5

]Hi

]pj
,

]pj

]t i
52

]Hi

]qj
. ~A6!

Whenk50, the particular solution is given by

qj~ t !52
1

2

]

]t j
ln@e2t1

2
w~ t1 ,t2!#,

pj~ t !50. ~A7!

Then w(t1 ,t2) satisfies the linear partial differential equ
tions

]2w

]t1
2 54t1

]w

]t1
12t2

]w

]t2
12w,

]2w

]t1]t2
54t1

]w

]t2
24t2w,

]2w

]t2
2 522

]w

]t1
. ~A8!

If we put t150 in these equations, we obtain
of

ts

s

’s

]3w

]t2
3 58t2w. ~A9!

In general,w is given by

w5E
c
e2~u4/2!22t1u222t2udu. ~A10!

The functionf̂(x) in Eq. ~3.8! satisfies the same differentia
equation~A9!.

APPENDIX B: KERNEL K̂„x,y…

We have the following equation forK(x,y), which is de-
rived by the contour integral representation~3.1!:

]

]z
K̂~x1z,y1z!52f̂~x1z!ĉ~y1z!. ~B1!

From this equation, we have

~x2y!
]

]z
K̂~x1z,y1z!52@~x1z!2~y1z!#f̂~x1z!

3ĉ~y1z!

52@f̂98~x1z!ĉ~y1z!

1f̂~x1z!ĉ98~y1z!#

52
]

]z
@f̂9~x1z!ĉ~y1z!

1f̂~x1z!ĉ9~y1z!

2f̂8~x1z!ĉ8~y1z!#. ~B2!

Therefore, by integration, we obtain

~x2y!K̂~x1z,y1z!52@f̂9~x1z!ĉ~y1z!1f̂~x1z!

3ĉ9~y1z!2f̂8~x1z!ĉ8~y1z!#

1C~x,y!. ~B3!

Settingz50 in this equation, it is then easy to prove that

S ]

]x
1

]

]yDC~x,y!50, ~B4!

since we have

S ]

]x
1

]

]yD K̂~x,y!52f̂~x!ĉ~y!. ~B5!

Thus, from Eq.~B4!, we findC(x,y)5C(x2y). Further set-
ting y50 in Eq.~B3!, and noting thatc(0)5c9(0)50, and,
from Eq. ~3.19!,

xK̂~x,0!5f̂8~x!ĉ8~0!, ~B6!

we find that the integral constantC(x) is vanishing.
Thus we have a simple expression forK̂(x,y) by



-

.

f

al

n-
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K̂~x,y!5
f̂8~x!ĉ8~y!2f̂9~x!ĉ~y!2f̂~x!ĉ9~y!

x2y
,

~B7!

which is the same as Eq.~3.21!.
SinceK̂(x,y) should be finite fory→x, we have the fol-

lowing constraint betweenf̂(x) and ĉ(x):

f̂8~x!ĉ8~x!2f̂9~x!ĉ~x!2f̂~x!ĉ9~x!50. ~B8!

This identity is proved by considering the derivative

d

dx
@f̂8~x!ĉ8~x!2f̂9~x!ĉ~x!2f̂~x!ĉ9~x!#

52f̂98~x!ĉ~x!2f̂~x!ĉ98~x!50. ~B9!

Then, by integration, we find that left hand side of Eq.~B8!
is a constant, but it vanishes since, by puttingx50, we have
f̂8(0)5ĉ(0)5ĉ9(0)50 from Eqs.~3.9! and ~3.15!.

APPENDIX C: FINITE- N CALCULATION

We consider some finite-N exact calcualtions for the den
sity of state and for the correlation function nearl50. The
derivative of the density of state is factorized as Eq.~3.2!.
We evaluatefN(l) of Eq. ~3.3!. The expansion at smalll is
easily done, and after the rescalingx5N23/4l, it gives, for
instance, in the caseN56,

f~x!5f~0!~120.475 25x210.090 17x41••• !,
~C1!

which should be compared with expansion~3.9! in the large-
N limit f(x)5f(0)(120.337 98x210.041 66x41•••).
For c(l), we determine the expansion for smalll by com-
puting the residue in Eq.~3.4! as

c~l!5CNN21/2F2l2
1

3!S 2

NDl31
1

5!S 2

N
2

8

N2Dl5

1
1

7!S 20

N2 2
48

N3Dl71••• G , ~C2!

where l5N1/4x and CN is a coefficient, which tends to
1/Ap. Thus, in the large-N limit, for a fixed x, we obtain

ĉ~x!52
1

Ap
xS 12

2

5!
x41

12

9!
x8

••• D . ~C3!

There arex3 andx7 terms, but they are order ofN23/4 and
are neglected in the large-N limit. This result agrees with Eq
~3.15! completely.

KN(x,y) is evaluated for smallN (N52, 4, and 6! by the
contour integration Eq.~3.1! to confirm the universal form o
~3.26!. We have

K2~x,y!5
Ap

2p
e21F11~2xy12y22x2!1S 2

3
y41

4

3
xy3

22x2y222x3y1
1

2
x4D1••• G , ~C4!
K4~x,y!5
1

2p
Ap

2
e22F7

2
19~2xy12y22x2!122S 32

66
y4

1
4

3
xy322x2y222x3y1

1

2
y4D1••• G , ~C5!

K6~x,y!5
1

2p
Ap

3
e23F87

8
1

393

8
~2xy12y22x2!

1
1647

8 S 630

1647
y41

4

3
xy322x2y222x3y1

1

2
x4D

1••• G , ~C6!

where we have to scalex by N23/4x to compare with Eq.
~3.26!. After the scaling, we find that it tends to the univers
form in the large-N limit.

APPENDIX D: PADÉ APPROXIMATION FOR LARGE S̃

For the Wigner-Dyson case, the probability of no eige
value in the interval (2s/2,s/2), E(s) is Gaussian for large
s. Therefore the quantityR(s) defined by

R~s!5
]

]s
lnE~s! ~D1!

is proportional tos in the large-N limit.
We apply Pade´ analysis forR(s) in the Wigner-Dyson

case, in which the exact expression forR(s) is known. Using
the series ofE(s) in Eq. ~3.34!, we have

R~s!52F11s1s21S 12
p2

9 D s31S 12
5

36
p2D s4

1S 12
p2

6
1

2p4

225D s51S 12
7p2

36
1

7p4

675D s6

1S 12
2p2

9
1

121p4

8100
2

p6

2205D s71••• G . ~D2!

The @3,2# Padéapproximant forR(s) is given by

FIG. 1. The level-spacing probabilityp(s) for the Wigner-
Dyson case, andp( s̃ ), are plotted by the Pade´ approximation
~D5!, wherex is s and s̃ , respectively.
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R~s!52S 11a1s1a2s21a3s3

11b1s1b2s2 D , ~D3!

where a151.486 956, a251.904 78, a350.808 162, b1
50.486 956, andb250.417 829. Thus, in the large-s limit,
E(s) is estimated to exp(20.967 097s2). The exact value is
known to beE(s);exp(2p2s2/8), wherep2/851.233. With
the @4,3# Padé, the estimate is further improved a
a151.856 62,a252.569 53,a351.638 48,a450.424 931,
b150.856 623, b250.712 904, b350.165 575, and
E(s);exp(2a4s

2/2b3), wherea4/2b351.2832. This value is
very close to the exact solution. Using this Pade´ approxima-
tion for R(s), we obtain the behavior ofE(s) for all region
of s by

E~s!5expF E
0

s

dx R~x!G . ~D4!
The level-spacing probabilityp(s) is obtained as the secon
derivative ofE(s),

p~s!5
d2

ds2 E~s!5F d

ds
R~s!1@R~s!#2GexpF E

0

s

dx R~x!G .
~D5!

The value ofp(s) by @4,3# Padéanalysis forR(s) is shown
in Fig. 1.

When we apply this Pade´ analysis for Eq.~3.33! in terms
of s̃ , we have, for @3,2# Padé analysis, a152.1118,
a2516.0318, a359.24379, b151.11179, b2513.920,
and E( s̃ );exp(20.3320s̃ 2). In the large-s̃ limit, s̃ is
proportional tos4/3 from Eq. ~3.32!. The level-spacing prob-
ability p(s) in this case is obtained from the second deriv
tives of E( s̃ ) by s̃ . The result of@3,2# Padéanalysis for
p( s̃ ) is shown in Fig. 1.
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